
International Journal of Theoretical Physics, Vol. 38, No. 1, 1999

Irreversibility, Lax± Phillips Approach to Resonance
Scattering and Spectral Analysis of
Non-Self-Adjoint Operators in Hilbert Space
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Since the publication of the very first papers on quantum mechanics the theory
of self-adjoint operators in Hilbert space has been a basic tool of quantum theories.
It turns out that the description of the irreversible dynamics of complex systems
requires the development of the spectral theory of non-self-adjoin t operators as
well. In this paper we consider the Hilbert space version of the theory of dissipative
operators, which appear as generators of the evolution reduced to a properly
selected observation subspace. The spectral analysis of these operators is based
on ideas of the functional model and dilation theory rather than on traditional
resolvent analysis and Riesz integrals. The role of the parameter of the functional
model is played by an analytic functionÐ the characteristic functionÐ which is
interpreted and calculated as a scattering matrix for the relevant scattering
problem. Thus the most important object of the spectral analysis of dissipative
operators appears as an element of spectral analysis of a self-adjoint spectral
problem. This paper is intended both as an introduction and a sort of bilingual
text for specialists in harmonic analysis and operator theory who are interested
in mathematical problems of the description of irreversible dynamics. The last
part describes original results of the author published in different journals during
the last decade.

1. SPECTRAL ANALYSIS OF SELF-ADJOINT OPERATORS
AND QUANTUM LOSCHMIDT PARADOX

The first really serious success of the spectral theory of operators was

achieved actually almost 200 years ago by the French bureaucrat Jean Baptist

Fourier, appointed by Napoleon a prefect of the department of Val d’ Isere.
In 1822 Fourier published Theorie Analytique de la Chaleur [1], where the

heat exchange in a rectangular solid block V was described under the assump-
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tion that the temperature at the surface - V was given. Fourier reduced this

problem to a partial differential equation (``heat equation’ ’ ) for the correspond-

ing temperature field T (x, y, z, t):

- T

- t
2 k 2 1 -

2T

- x2 1
- 2T

- y2 1
- 2T

- z2 2 5 0

with a positive coefficient k 2 for heat conductivity and the proper initial and

boundary conditions:

T (x, y, z, 0) 5 T0(x, y, z), (x, y, x) P V

T (x, y, z, t) 5 0, (x, y, z) P - V , t $ 0

Fourier suggested a remarkable methodÐ the Fourier methodÐ for the
solution of this problem. Having found all `̀ spatial modes’ ’ Ð the eigenfunc-
tionsÐ of the Laplace operator in the domain V , i.e., all nonzero solutions

w v to the stationary homogeneous equation

2 k 2 F - 2 w v

- x2 1
- 2 w v

- y2 1
- 2 w v

- z2 G 5 l v w v

he suggested to use for the solution of the initial nonstationary problem an

anzatz represented in a form of a series over all spatial modes w v with time-
dependent coefficients. Inserting this ansatz into the heat equation, he found

that the coefficients are just proportional to the exponentials of the eigenval-

ues l v :

T 5 o
v

e 2 l v tu v w v

Then he defined the amplitudes u v from the initial condition having repre-

sented it in form of the Fourier series:

T0 5 o
v

u v w v

The convergence of this series follows from the orthogonality of spa-
tial modes

# w v w 2
v 8 dm 5 d v , v 9

and an infinite-dimensional version of the Pythagorean theorem (``Parseval

identity’ ’ )

^ T0, T0 & 5 o
v

) u v ) 2
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An elegant geometric interpretation of the Fourier method was found almost

100 years later by David Hilbert, and the infinite-dimensional function space

with the dot-product similar to one defined above by the integral is now one
of the most popular function spaces, and bears Hilbert’ s name [2].

But the real celebration of spectral analysis coincides with the beginning

of quantum physics. The needs of physics stimulated the development of the

spectral theory of so-called SchroÈ dinger operators in this century.

The simplest quantum HamiltonianÐ SchroÈ dinger operatorÐ in proper

time-space scale looks like a sum of the Laplacian and a multiplication
operator by some real continuous function qÐ the ``potential’ ’ :

Lu 5 2 1 -
2u

- x2 1
- 2u

- y2 1
- 2u

- z2 2 1 q (x, y, z)u [ 2 D u 1 q (x, y, z)u

The state of a quantum particle is defined by the wave function, which
satisfies a nonstationary SchroÈ dinger equation similar to the heat equation,

but a complex one:

1

i

- c
- t

5 L c

c ) t 5 0 5 c 0

and this can be constructed by the Fourier method, provided the eigenfunctions

of the corresponding SchroÈ dinger operator L are found:

L w v 5 l v w v

The solution of the nonstationary SchroÈ dinger equation can be represented

as the action of the dynamical group Vt on the initial wave vector:

c (t) 5 o
v

ei l v t w v c 0
v

5 eiLt c 0 [ Vt c 0

If the potential is real (q 5 q) and semibounded from below (inf q . 2 ` ),

then the Hamiltonian L is ``self-adjoint’ ’ ; in particular its quadratic form

is real:

^ L c , c & 5 ^ c , L c &

and the corresponding eigenfunctionsÐ ``pure quantum states’ ’ Ð are orthogo-
nal in the proper (or improper) sense and can be normalized

^ w v , w v 8 & 5 d v v 8
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so the coefficients c 0
v of the solution of the nonstationary equation can be

defined from the initial conditions as orthogonal projections: c 0
v 5 ^ w v , c (0) & .

The ``mean value’ ’ of any other quantum observable which is represented
by a self-adjoint operator A in the Hilbert space of wave functions is defined

in the fixed state c by the quadratic form of this operator with given quan-

tum state

A ( c ) 5 ^ c , A c &

For instance, the value of the quantum mechanical momentum operator Px

Px 5 i
d

dx

is given by the integral over the corresponding configuration space:

Px( c ) 5 # R3

i
d c
dx

c dm

The set of all eigenvaluesÐ the discrete spectrumÐ of the Hamiltonian

is one the most important characteristics of a quantum system, since it gives
the list of all possible values of energy l v which the quantum system can

acquire,

L ( w v ) 5 ^ w v , L w v & 5 l v

Generally the spectrum { l v } [ s (L) of the Hamilton L can contain both

discrete and continuous part if the system is not bounded in space or if the
potential has strong singularities.

The investigation of the structure of the spectrum, in particular, the

distribution of eigenvalues, the convergence of eigenfunction expansions in

the form of Fourier series or integrals, and the asymptotic behavior of the

solutions of stationary and nonstationary equations on a large time and space

scale are the main problems of the spectral analysis of self-adjoint differential
operators, in particular the SchroÈ dinger operators. This branch of the theory

of operators and mathematical physics has been intensely developed during

the past few decades [21], aside from some important details which have put

essential physical restrictions on our considerations.

Notice first that the most straightforward results concerning the conver-

gence of eigenfunction expansions of the solution of the SchoÈ dinger equation
follow from the orthogonali ty of the eigenfunctions via the Parseval identity.

This is equivalent to the conversation law for the wave function:

^ c (t), c (t) & 5 ^ c (0), c (0) & 5 o c 0
v c 0

v
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Interpreting the square modulo of the wave function c (x) c (x) as a probability

density to find the particle at the point x, we can assign an important physical

meaning to the mentioned conservation law: it means, that the total probability
to find the particle in the configuration space R3 is equal to 1 and does not

change in course of evolution governed by the self-adjoint Hamilontian L.

In other words, the dynamical group corresponding to the SchroÈ dinger equa-

tion is unitary in this case,

^ Vt c 0, Vt c 0 & 5 ^ c 0, c 0 & 5 # R3 Z c 0 Z
2

dm

This elegant statement actually shows that the evolution of the wave

function described by the above equation is reversible.

This fact becomes even more obvious if we consider the quantum evolu-

tion in the Hilbert space of density matrices r (x, y), which is just a tensor
product of two copies of the space of wave functions. Density matrices can

be interpreted as kernels of Hilbert±Schmidt integral operators acting in the

space of wave functions. Denoting these operators by r , we see that the

evolution of the simplest density matrix r (x, y) 5 c (x) 3 c 8(y) is given by

the formula

r (x, y; t) 5 e iLT c (x) 3 eiLt c 8(y)

and thus it is governed by the operator which is connected to the corresponding

Hamiltonian in a very simple way:

L* r 5 L r 2 r L [ [L, r ]

This operator L* is called Liouvillian; it has a symmetric spectrum [3],2

formed of all possible differences: { l v v 8 5 l v 2 l v 8}, and the eigenfunctions

of it are just direct products of the corresponding eigenfunctions of the

Hamiltonian, r v v 8(x, y) 5 w v (x) w v 8(y),

L* r v v 8 5 l v v 8 r v v 8

The whole picture of quantum physics can be written in terms of density

matrices and Liouvillians. In a way it is more natural than quantum mechanics

in terms of wave functions, since actually physicists measure not the values

of the energy l v , but the transition energies l v v 8 5 l v 2 l 8v , which are

exactly eigenvalues of the corresponding Liouvillians. Moreover, considering

Liouvillians instead of Hamiltonians, we avoid some trival quantum diver-
gences, such as the infinite energy of the vaccum state of an infinite system

of quantum oscillators.

2 The paper by Sophn [3] contains an error considering the singular part of the spectrum.
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Writing down the solution of the nonstationary equation for the Liouvil-

lian for some conservative quantum system (for instance, the universe),

1

i

d r
dt

5 L* r [ [L, r ]

we can change (at least ``in principle’ ’ ) the initial conditions at some moment
of time in such a way that the Fourier coefficients which correspond to the

opposite eigenvalues just change places. Then up to the trivial isomorphism

r l ® r 2 l , the evolution of the system will go in the opposite direction. Thus,

in principle, we can invert time. The described paradox is an analog of the

celebrated Loschmidt paradox concerning the time reversibility in Newtonian
mechanics. That paradox was suggested to disprove the Boltzmann’ s H-

theorem on approaching equilibrium in a large system of Newtonian particles.

But in fact the Loschmidt paradox just showed that standard Newtonian

mechanics cannot describe the approach to equilibrium. Similarly our quan-

tum version of the Loschmidt paradox shows that standard quantum mechanics

based on the spectral theory of Self-adjoint operators meets some difficulties
when describing the dynamics of large quantum systems.

2. IRREVERSIBLE DYNAMICS AND THE MINIMAL DILATION

It is important that the above philosophical paradox is relevant to any

extended (not necessarily large) quantum or classical system, since we never

can invert time just because we never can collect the complete set of initial data

for any extended system. This straightforward explanation of irreversibility,

carefully analyzed by D. Ruelle, is not complete [19]. The Brussels school
connects the phenomenon of irreversibility of dynamics with intrinsic proper-

ties of the system, which are revealed by proper rigging of the corresponding

Hilbert space [8]. The high price they pay for it is the disappearance of

Hilbert structure. The general spectral theory of non-self-adjoint operators

in rigged spaces is not yet developed, though there is a series of elegant

soluble models. That is why in this paper we keep a simpler point of view,
assuming that the irreversibility is caused by the reduction of the dynamics

onto the properly chosen observation subspace. This means that we are dealing

now not with the whole dynamical group Vt satisfying certain conservation

laws, but with the compression of this group onto the proper observation

subspace K,

PKVt ) K
A simple but typical example of an acoustic system for which the

compressed evolution reveals the semigroup properties is given by a resonator
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with a small opening, or by the inside of a dome with an open door connecting

it to the surrounding space. In this case the restriction of the wave dynamics

onto the inner part of the system gives to our surprise a reduced dynamics
as well, since the ``inside’ ’ evolution is defined by the `̀ inside’ ’ data only

and the emitted waves never return [7]. This reduced dynamics is described by

a semigroup generated by some non-self-adjoint (`̀ dissipative’ ’ ) operator B:

KKVt ) K 5 eiBt

which has generally a nonorthogonal system of eigenfunctions and a complex

(nonreal) spectrum.

The elegant picture of spectral analysis described above for self-adjoint

operators fails in this case, since neither the Parseval identity nor the conserva-
tion law is available for reduced dynamics and for eigenfunctions of the

corresponding generator. But in some way the picture of the evolution

becomes more realistic, since the unpleasant paradox of existence of (though

conceivable!) inverse evolution is excluded, since an essential piece of infor-

mation is lost in course of evolution, for instance, all the components of the

wave process which correspond to the complex eigenvalues l , I l . 0, go
to zero when t ® ` .

Thus we see that the investigation of realistic situations includesÐ at

least sometimesÐ an essential reduction of the space of all initial data. This

means that the spectral analysis of self-adjoint operators in these cases must

be replaced by the spectral analysis of operator functions which we get by

reducing the unitary dynamical group onto proper observation subspaces.

PKVt ) K 5 2
1

2 p i R PKR l ) Ke i l t d l

or maybe even to the spectral analysis of some non-self-adjoint operators.

But at the same time it is convenient for technical reasons to retain the main

advantages of the self-adjoint theory such as orthogonali ty of eigenfunctions

and the Parseval identity, to guarantee the convergence of the Fourier series

representing the reduced solutions of the corresponding nonstationary
equations.

Fortunately, both these controversial demands can be satisfied.

Let us consider the general Lax± Phillips case, when the reduced dynam-

ics is represented by some evolution semigroup. This takes place if the unitary

dynamical group generated by our Hamiltonian or Liouvillian possesses an

orthogonal pair of incoming and outgoing subspaces D 6 :

e iL tD+ , D+, t . 0, e iLtD 2 , D 2 , t , 0

^ u+, u 2 & 5 0, u 6 P D 6
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The orthogonal complement K of E+ % D 2 , which is a coinvariant
subspace of the forward evolution reduced onto H * D 2 , can be chosen as an

observation subspace. In the Lax±Phillips case the original unitary dynamical
group compressed onto this subspace proves to be a contracting dynamical

semigroup and thus is generated by some dissipative generator B. The

resolvent of this operator in the lower half-plane coincides with the com-

pressed resolvent of the generator of the original unitary dyamical group.

To observe these facts, we need a small portion of the geometry of

Hilbert spaces. Let us check the first statement, following ref. 7. Using the
orthogonal decomposition H8 5 D 2 % K % D+, we transform the expression

for the reduced dynamics in the following way:

PKe iL(t1 1 t2) PK 5 PKe iLt1{PD 1 1 PK 1 PD 2 }e iL t2PK

5 PKe iL t1PD 1 e iLt2PK 1 PKe iL t1PKe iL t2PK

1 PKe iLt1PD 2 e iLt2PK

The first and third terms in the right side vanish due to the invariance of D 6

if t1, t2 $ 0 and the central term is represented in the form

PK
iL(t1 1 t2)PK 5 PKe iLt1PKPKe iLt2PK

5 PKe iL t1PK 3 PK e iLt2PK , t1, t2 $ 0

Thus the semigroup property is fulfilled. Since the projections PK are bounded

operators and the unitary dynamical group is strongly continuous, then the

reduced semigroup is a strongly continuous contracting semigroup as well,
hence it has a dissipative generator B,

PKe iL tPK 5 e iB t, IB $ 0

which means that the conservation law is replaced by the dissipation.

Let us check that the resolvent of the dissipative generator B is connected
by a simple formula to the resolvent of the generator L of the unitary dynamics.

In fact, integrating the last equation multiplied by e 2 i l t over t on the interval

[0, ` ), we get immediately for I l , 0

PK
I

L 2 l I
PK 5 2

1

i #
`

0

PKe i(L 2 l )t PK dt

5 2
1

i #
`

0

e i(B 2 l )t dt 5
I

B 2 l I
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The last formula means that the resolvent of the initial self-adjoint operator

framed by projections onto the observation subspace possesses an analytic

continuation onto the lower half-plane as the resolvent of a certain dissipative
operator and thus it can be continued also onto the upper half-plane as well

with singularities at the spectrum of this dissipative operator.

Unfortunately the described elegant representation of the analytical con-

tinuation of the reduced resolvent PK[I/(L 2 l I)]PK is possible only for

operators which serve as generators of unitary groups possessing Lax±Phillips

properties. In particular, the operator L must contain a part which is unitarily
equivalent to the quantum mechanical momentum operator (1/i) d/dx and

thus has an absolutely continuous spectrum covering the whole real axis with

constant multiplicity. Expanding the Lax±Phillips techniques beyond this

class requires development of harmonic analysis on multiconnected domains

[16, 18].

The Lax±Phillips approach is a powerful tool for the investigation of
the spectral properties of generators of the reduced dynamics. In particular

we get the functional model of the dissipative operator, writing it down in

the spectral representation of the original self-adjoint generator of the unitary

evolution group. Actually different spectral representations give different

types of functional models [10]. But generally these functional models permit
us to reduce important geometrical questions of spectral theory to equivalent

questions of the theory of analytic functions (see Section 3).

Conversely, consider some dissipative generator B of a contracting semi-

group. To build the functional model of it we need some restoring construction
which could restore the complete unitary dynamical group from the reduced

one. Let us consider a simple but representative example. We know from
our everyday experience that the acoustic field inside a dome is not very

much affected by events outside. This means that possibly we make only a

small error when replacing the `̀ outdoor ’ ’ part of the whole Hamiltonian by

some minimal artifical model construction, to accomplish the contracting

dynamics inside and create a new minimal unitary (with proper conservation

laws fulfilled) dynamical group V 8
t acting on some new Hilbert space H8 .

K, such that the compression of V 8
t onto the coinvariant subspace K gives

the same result as the compression of the original dynamics Vt on it:

PKVt ) K 5 e iBt 5 PKV 8
t ) K , t . 0

This new unitary dynamical group is called the minimal unitary dilation of
the contracting evolution semigroup e iBt. One can show that the minimal

unitary dilation is uniquely defined up to some trivial unitary isomorphism.

In particular this means that the minimal unitary dilation is unitarily equivalent

to the proper part of the complete dynamical group Vt reduced onto the
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invariant subspace HK generated by the observation subspace that is the

coinvariant subspace K:

HK 5 ~
t 5 2 `

1 `

VtK

Thus the construction of the unitary dilation, by attaching `’ artificial’ ’ chan-

nels, results in separating the part of the real dynamical group acting in the

minimal subspace of the whole Hilbert space which proves to be connected
to K in the course of evolution. To construct the minimal self-adjoint dilation

it is sufficient to accomplish K by two orthogonal channelsÐ incoming and

outgoing ones D 6 5 L2(0, 6 ` ; E)Ð with simple shifts acting on them [13].

The shift operator is an important detail of the proposed construction.

We discuss now some typical features of this important object. Consider first
the simplest example of the shift group in L2(R):

Vt: u (x) ® u (x 2 t)

It is obvious that this is a unitary commutative group since

#
`

0

) u (x) ) 2 dm 5 #
`

0

) u (x 2 t) ) 2 dm, VtVsu 5 Vt 1 su

and the subspaces D 6 5 L2(R 6 ) are obviously invariant subspaces of it:

VtD+ , D+ , t . 0, VtD 2 , D 2 , t , 0

They are obviously orthogonal in the sense of Hilbert space. The spectral

representation of the shift group is given by F Fourier which can be interpreted

as a spectral decomposition on improper eigenfunctions w k 5 e 2 ikx of the

generator of the group, the quantum mechanical momentum operator P:

P 5 i
d

dx
, P w k 5 k w k

F: u ® ^ w k , u & 5
1

! 2 p #
1 `

2 `

e ikxu (x) dm

F transforms D 6 isometrically into the corresponding Hardy classes H 2
6 of

square-integrable functions, which possess an analytic continuation onto the

upper or the lower half-planes of the variable k, respectively. The orthogonal
projection onto H 2

1 in L2(R) is given by the Cauchy-type integral

[P+ f ](x) 5
1

2 p i # R

f (s)

s 2 (x 1 i0)
ds
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The components of the dilations of dissipative operators inside artificial

incoming and outgoing channels attached to the initial subspace K are usually

constructed of properly reduced parts of the momentum operator. As long
ago as 1946 A Beurling described all invariant subspaces of shift operator

in the scalar case. The general case was investigated H. Helson, V. Potapov,

and B. Sz-Nagy and C. Foias; see ref. 6 for details and for a complete

bibliography.

The problem of description of all invariant subsapces of a shift group

looks more natural in the spectral representation of the shift group (Fourier
representation), where the shift is replaced by the multiplication

F: Vt ® eikt
*

Actually in the Fourier representation the invariant subspaces of right shifts
t . 0 contained in H 2

1 are parametrized by the common zero-sets s (D+) of

functions from D+:

s (D+) 5 {z: F (z) 5 0 for each f : f P FD+ , H 2
1 }

which actually serve as maximal ideals of the algebra of all bounded analytic

functions in upper half-plane. For any zero-set s one can construct an associ-

ated inner function S s ; S s ( l ) 5 0, l P s , which is a contracting analytic
function in the upper half-plane. If, for instance (in the scalar case)

s 5 {kl}, l 5 1, 2, 3, . . . ; Ikl . 0

is the set of common zeros of all functions from D+, then the corresponding

function is represented in the form of a Blaschke product which is convergent

in the upper half-plane provided the argument of each factor is properly

renormalized:

b (k) 5 p k 2 kl

k 2 kl

e 2 i h
l

Here h h is the argument of the factor (k 2 kl/k 2 kl) at the complex point

k 5 i. The common zeros of the ``exponential order’ ’ at the boundary are
connected with so-called singular inner functions parametrized by the positive

measures m on the real axis which are singular in respect to the Lebesgue

measure and can have a positive ``atom’ ’ m ` , m ` $ 0, at infinity:

q (k) 5 expi H m ` k 1 #
1 `

2 `

1 1 ks

s 2 k
d m (s) J
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All invariant subspaces D+ of the shift contained in L2(R+) are described

in the spectral representation as parts of H 2
1 , parametrized by general inner

functions S (k) 5 b (k) q (k):

DS
1 5 SH 2

1

The zeros of the Blashke product, the support of the measure m , and possibly
` constitute the spectrum of the total inner function and play the role of

common zeros of elements of the corresponding invariant subspace.

The constructed inner function S plays an important role in the descrip-

tion of the dynamics of the reduced system. It can be calculated in terms of

the asymptotic behavior of solutions of the spatial modes of the dilated self-

adjoint problem, being an object of the self-adjoint theory [9]Ð a scattering
matrix for some pair of self-adjoint operators.

Let us consider the procedure of constructing the self-adjoint dilation

in the most interesting case of a dissipative operator of SchroÈ dinger type

with the complex potential q (x) 5 r (x) 1 ig2(x) in L2(R
3):

Bu 5 2 D u 1 q (x)u [ Au 1 ig2u

The incoming and outgoing channels can be constructed [13] as spaces of

square-integrable functions on ( 2 ` , 0) and (0, ` ), respectively, taking values
in L2(R

3). The corresponding minimal self-adjoint dilation is defined on

smooth elements of the orthogonal sum H8 5 D 2 % L2(R
3) % D+,

U 5 1 u 2 ( j )

u (x)

u+( j ) 2
satisfying the boundary condition

[u 2 (0) 2 u+(0)] 5 ig (x)u (x)

in the following way:

L8U 5 1
2i

d

d j
u 2 ( j )

Au 1 g (x) [u 2 (0) 1 u+(0)]

2i
d

d j
u+( j ) 2

Using the dilation L8, we can construct the corresponding unitary dynam-

ical group V 8t 5 e iL8t which proves to be the dilation of the contracting



Spectral Analysis of Non-Self-Adjoint Operators in Hilbert Space 33

evolution semigroup e iBt. The action of this new group on incoming and

outgoing channels D 6 is in fact represented by shifts

V 8t Z D 2
: u 2 ( j ) ® u 2 ( j 2 t); j , j 2 t , 0

V 8t Z D 1
: u+( j ) ® u+( j 2 t); j , j 2 t . 0

These shifts bring the flow of the ``global’ ’ wave function U from D 2 to K
and from K to D+ (for positive t) to provide the ``global’ ’ conservation law.

If there are no other incoming and outgoing channels except the constructed

D 6 , then all the flow incoming from D 2 will eventually go out into D+,

similar to the above example of the shift group in L2(R). In this case the

dilated dynamical group is unitarily equivalent to the shift group, and in the

proper `̀ incoming’ ’ spectral representation the subspace D 2 is represented

by the Hardy class H 2
2 , and D+, being orthogonal to D 2 , is represented by

some invariant subspace of the shift group (e ikt, t . 0) of Beurling’ s type

D+ 5 SH 2
1 parametrized by the corresponding inner function S. This inner

function can be calculated in an explicit form from the asymptotics of the

eigenfunctions of the dilated operator L8 associated with the corresponding

incoming spectral representation [10].

The (improper) eigenfunctions F 5 { w 2 , w , w +} of the (absolutely)

continuous spectrum of the dilated operator L8 are given by the bounded

solutions of the corresponding homogeneous equation

L8 F l 5 l F l

which satisfy the boundary conditions and the causality conditions of the

analytical continuation of the component w 2 into the upper half-plane and

the components w , w + into the lower half-plane. These components w 6 have

to coincide with the eigenfunctions of the momentum operator in the incoming

channel and are proportional to the eigenfunctions of the momentum operator

in the outgoing channel with some coefficient S+(k) 5 I 1 T+(k), which is

called the corresponding (adjoint) scattering matrix. Here T is some compact

integral operator in E 5 L2 (supp g) with the kernal T (x, y; k), which is

called the scattering amplitude:

in D 2 : w k,y(x, j ) 5 d (x 2 y)e 2 ik j

in D+: w k,y(x, j ) 5 d (x 2 y)e 2 ik j 1 T +(x, y; k)e 2 ik j
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The spectral representation connected with the eigenfunctions F k,y assigns

D 2 to H 2
2 (E ) and D+ to SH 2

1 (E ), since for u 6 P D 6 we have

^ w k,x, u 2 & 5 #
0

2 `

e ik j u 2 ( j , x) d j

^ w k,x, u+ & 5 #
1 `

0

e ik j S (k)u+( j , x) d j

5 # supp g

S (x, y; k) #
1 `

o

e ik j u+( j , y) d j dy

Consider once more the case when there are no other incoming and outgoing

channels except D 6 (see ref. 10 for the general case). In this case the scattering

matrix S is unitary. Moreover, it follows from the orthogonali ty D 6 that

SH 2
1 , H 2

1 , i.e., S is an analytic function of the spectral variable k. Represent-

ing the subspaces D 2 , K, D+, and the operator B in terms of this incoming
spectral representation U J

2

U J
2 D 2 ® H 2

2

U J
2 D+ ® SH 2

1 , H 2
1

U J
2 K ® H 2

1 * SH 2
1 [ K

U J
2 e iBt(U J

2 ) 2 1 5 PKe ikt Z K
we get the so-called Functional model of the dissipative operator B, which

serves as a powerful tool to translate the most important questions of spectral

theory into the language of the theory of analytic functions. The first variant

of the functional model was constructed by Sz-Nagy and Foias [6]. The only

parameter of this model is given by the scattering matrix S, which was defined
independently in an acoustic problem by Lax and Phillips [7] as a unitary
coefficient S (k) connecting the ``incoming’ ’ and ``outgoing’ ’ spectral repre-

sentations u 6 .

U J
2 (k) 5 S (k)U J

1 (k)

with U J
1 defined for D+ in the same way as U J

2 is defined for D 2 , that is, j+:
D+ ® H 2

1 (E). Later Adamjan and Arov [9] found deep connections between

the Sz-Nagy±Foias functional models and the scattering theory of Lax and
Phillips. In the general case the scattering matrix proves to be an analytic

contracting function in the upper half-plane Im k . 0:

) S (k) ) # 1, Im k $ 0

Moreover, it coincides with the characteristic function of the dissipative

operator discovered in the 1950s by Livschic [5].
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3. SPECTRAL ANALYSIS OF THE NON-SELF-ADJOINT
OPERATOR FROM THE POINT OF VIEW OF ITS SELF-
ADJOINT DILATION

We saw that the scattering matrix appears in the spectral theory of

dissipative operators as an object connected with some self-adjoint operator

and can be calculated by means of the self-adjoint theory. For instance, in

the case of the SchroÈ dinger operator discussed above it was calculated as

an adjoint transmission coefficient S+ for eigenfunctions of the continuous

spectrum which are ``initiated’ ’ by exponentials e 2 ikj h in D 2 and look like

e 2 ik j S+(k)h in D+. It is important that the whole spectral picture of the dissipa-

tive operator B is encoded in S.

Let us consider the simplest example, assuming that the scattering

matrix is a scalar inner function S (k) 5 u (k) P (k) in the upper half-plane

Ik . 0 with proper behavior at infinity: m ` 5 0. We calculate the

resolvent of the generator B of the reduced dynamics PKU t ) K in the

incoming spectral representation of the underlying unitary dynamics U t

assuming that D 2 5 H 2
2 , D+ 5 SH 2

1 , Ui [ e ikt. Obviously (see Section 2)

for I l , 0 we have

(B 2 l I) 2 1f 5
1

k 2 l
f, f P K

We check that the expression in right side coincides with

f 2 S [S+f ( l )]

k 2 l

For f P K we have S+f P H 2
2 , hence [S+f ( l )] is defined. Then

{f 2 S [S+f ( l )]}/(k 2 l ) P H 2
1 . On the other hand, for any g+ P H 2

1 we have

K f 2 S [S+f ( l )]

k 2 l
, Sg+ L 5 K S+f 2 [S+f ( l )]

k 2 l
, g+ L 5 0

since {S+f 2 [S+f ( l )]}/(k 2 l ) P H 2
2 .

Similarly for I l . 0 the formula

(B 2 l I) 2 1f 5
f 2 SS 2 1( l ) f ( l )

k 2 l
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can be checked. One can see from the last formula that the spectrum of the

operator B coincides with the spectrum of the inner function S.

Another simple exercise is to check that the eigenfunction c z of the
operator B which corresponds to simple zero z of P is given by the formula.

c z (k) 5 ! 2I z
u P (k)

k 2 z
and the eigenfunction of f z of the adjoint operator B which corresponds to

the eigenvalue z is just a Cauchy kernel:

f z 5
! 2I z
k 2 z

One can see now that the systems of eigenfunctions { c z }, { f z } are

biorthogonal

^ c z , f z 8 & 5 d z , z 8, ^ c z , f z & 5 I z
dS

dk Z z
and, at least formally, the spectral decomposition in eigenfunctions of the
discrete spectrum of B is given by the interpolation series

u (k) 5 o
z

u P (k)

k 2 z
u ( z )

dS/dk | z

For similar calculations in the general case of nonunitary S see ref. 10.

Using the functional model, we reduce the spectral properties of a
dissipative operator to studying the analytic properties of a single (scalar or

matrix) analytic function S (k). In particular, the distribution and the number

of eigenvalues are defined by uniqueness theorems which describe the proper-

ties of zero-sets of an analytic function (as a function of its smoothness in

the closed upper half-plane). For instance, it was shown [4] that the number
of eigenvalues of the SchroÈ dinger operator with the complex potential q (x)

satisfying the property

) q (x) ) # C exp( 2 d ) x ) a ), d . 0

is finite if a $ 1/2, but may be infinite if a , 1/2. In the latter case the set

of all accumulation points of the eigenvalues is situated on the positive half-

axis of the spectral parameter and it is represented generally by a fractal set
of measure zero which has a positive Hausdorf dimension m , where m # (1 2
2 a )/1 2 a ).

The systems of eigenvectors of the discrete spectrum of a dissipative

operator are not generally orthogonal, but sometimes they can be connected

by an invertible transformation to some orthogonal and normalized basis.
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Such systems are called Riesz bases. For Riesz bases the equation representing

the infinite-dimensional Pythagorean theorem, i.e., the Parseval identity, is

replaced by a corresponding bilateral inequality which can be used to prove
the convergence of spectral decompositions. The system of eigenfunctions

of a dissipative operator forms a Riesz base if and only if for any uniformly

bounded interpolation data defined on the zero set of the scattering matrix

the bounded solution of the interpolation problem exists in U j
2 K. In the scalar

case this is the well-known Carleson condition

P
l Þ m Z kl 2 km

kl 2 km Z $ d . 0

The connection between spectral decompositions and interpolation problems

is an important fact of harmonic analysis; see, for instance, ref. 11 and the
bibliography therein. In particular, in the U j

2 K-spectral representation of the

dilation the biorthogonal decomposition in the eigenfunction becomes an

interpolation series. The important question of separating the spectral sub-

spaces Nd , Ns , Nc corresponding to the discrete, singular, and (absolutely)

continuous spectrum is reduced to the question of embedding theorems for
some classes of analytic functions [12]. The convergence and summability

of spectral decompositions over the absolutely continuous spectrum of a

dissipative operator depends on the distribution of real zeros of the corres-

ponding scattering matrixÐ so-called spectral singularities. It is extremely

important that for any dissipative operator there exist a ``canonical’ ’ system

of the eigenfunctions of absolutely continous spectrum [10], which is formed
by orthogonal projections onto K of the eigenfunctions of the part of the

self-adjoint dilation in the invariant subspace orthogonal to the reducing

subspace H 2 generated by the incoming channel.

H 2 5 ~
0

`

e iL8tD 2 .

The role of the spectral density for this system is played by S 2 1(k) 2 S (k) [10].
Returning to the classical problem of exponential bases on a finite

interval (0, 2 p ), one can formulate a test for a base property in terms of the

generating function f of the exponentials e iklx, which is an entire function of

exponential type 2 p vanishing at the points kl. Assuming that f is bounded

in the upper half-plane and all zeros of f are situated in upper half-plane, we
can reduce the problem to the question of joint completeness of the systems

of eigenfunctions of two mutually adjoint operators B, B+,

^ Bu, v & [ ^ u, B+v &



38 Pavlov

the first of them having the characteristic function S (k) 5 f (k)[ f (k)] 2 1. The

answer to the question of the base property of exponentials on the finite

interval is the following [14]:

Theorem 1. The system of exponentials {e iklx} forms a Riesz base in

L2(0, 2 p ) if only if the following conditions are fulfilled:

1. infm P
l Þ m Z kl 2 km

kl 2 km Z $ d . 0

2. sup
1

D # D
) f ) 2 dx ?

1

D # D
) f ) 2 2 dx , ` , D , R

Condition 2 is the celebrated Muckenhoupt condition [15], which is

actually equivalent to the geometric Kato zero-index condition for the orthog-

onal projections P1, P2 onto the pair of subspaces N1 5 fH2
1 and N2 5

L2 * fH2
2 in L2:

i P1 2 P2 i , 1

which is equivalent to the invertibility of operators P1P2P1, P2P1P2 in L1, L2,

respectively. Note that the exponentials on a finite interval are eigenfunctions

of a nonstandard spectral problem for the momentum operator i d/dx with
the ``spread’ ’ boundary condition, which cannot be analyzed by standard

tools of spectral theory. However, using our geometric method of orthogonal

projections, we can reduce the situation to a problem of classical operator

theory.

There exists a large class of nonstandard problems of spectral analysis

[10] which were mentioned in the beginnning of this paper. These are spectral
problems for operator functions which arise when reducing a nunitary dynami-

cal group to some observation subspace K. Only rare cases exist when the

reduced dynamics is described by a contracting semigroup, but we always

can associate a generalized spectral problem with it by considering the corres-

ponding Fourier transformÐ the compressed resolventÐ the Livshic matrix
[5]:

#
`

0

e 2 iktPKUtPK dt 5 iPK[L 2 kI] 2 1PK , Im k # 0

The operator function in K which arises in this way is initially an analytic

function in the lower half-plane, but in many interesting cases it possesses
an analytic continuation to the upper half-plane with some singularitiesÐ so-

called resonances. The analysis of resonances is important for the description

of the asymptotic behavior of the restricted dynamical group, and we need

a sort of spectral decomposition associated with resonance states, appearing
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in the form of residues of the analytic continuation of the compressed resolvent

at the resonances, similar to the eigenfunctions which constitute the residues

of the resolvent of the self-adjoint operator at the isolated eigenvalues. Unfor-
tunately the result of the analytic continuation of the compressed resolvent

is not generally a resolvent of any operator. The most important property

of resolventsÐ the Hilbert identityÐ is not generally valid for compressed

resolvents. Nevertheless it can be analyzed by our methods in some interesting

cases using the Kato zero-index condition [18]. One can formulate the follow-

ing general principle for analytical continuation of the compressed resolvent
of operators which generally are not generators of Lax±Phillips groups:

Let us assume that for given self-adjoint operator A there exist a unitary

group U t commuting with A and possessing orthogonal incoming and outgoing
subspaces D 6 and a coinvariant subspace K. If the operator A is a rational func-

tion of generators of the group Ut , then the compressed resolvent PK(A 2 l I) 2 1 ) K
possesses an analytical continuation onto the nonphysical sheet of the spectral

parameter l across the continuous spectrum of A as a linear combination of

resolvents of generators of reduced semigroups PKU t ) K, PKU 1
t ) K with coeffi-

cients which are polynomials of generators.

This principle was observed firstÐ for an operator with two-band spec-

trumÐ in ref. 16 and proved in ref. 18 for perturbed Jacobian matrices. This

prinicple enables us to apply the method of the functional model to the

spectral analysis of Livshic matrices of operators with band spectrum. In
particular it enables us to investigate the completeness and basis property of

the system of residual vectors which correspond to the poles of the Livshic

matrix on the nonphysical sheet of the spectral parameter. The last problem

can be reduced to the problem of joint completeness of the eigenvectors of

generators of the reduced dynamics and the adjoint operators and the joint
base property. This gives new results on completeness and expansion by

resonances for important quantum and acoustic problems, in particular for

periodic problems. But proper spectral analysis of resonances for periodic

or quasiperiodic SchroÈ dinger operators cannot be done using the standard

Lax±Phillips and Sz-Nagy±Foias techniques, which are applicable only to

simple domains, but requires development of the corresponding technical
tools for multiconnected domains on the complex plane [16, 17]. The investi-

gation of the corresponding few-dimensional problems is an attractive field

of research for analysts and mathematical physicists.

4. AVERAGED DYNAMICS ON MARKOV BACKGROUND.
DILATION AND SPECTRAL ANALYSIS

Returning to our initial motivation, we mention here one more effect

which destroys irreversibility. This is the stochastic background which is
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practically present in every physical experiment. Initially it may arise from

the quantum nature of our universe. The importance of the presence of the

stochastic background has been pointed out repeatedly by Prigogine in his
books on nonequilibrium statistical mechanics (see, for instance, ref. 19).

One can show that the presence of the stochastic background can be treated

technically in a way very similar to the case of reduced dynamics [20].

Consider a quantum Hamiltonian L (x) which depends on some Markov

process x (t) on a discrete finite stochastic space X. We assume that the

transition probabilities of the process are governed by the Fokker±Planck
equation for transition probabilities, with some symmetric positive stochastic

matrix M.

dp

dt
1 Mp 5 0

Let us assume that the Hamiltonian H depends on time via some Markov

process x (t) taking values in the space X of stochastic states. The natural

description of the corresponding evolution is given by the Liouville equation
for the density matrix r (t), which is realized as an element of the space Q
of Hilbert±Schmidt-type operators supplied with the inner product ^ r 1, r 2 & 5
Trace r 1

2 r 1:

1

i

d r
dt

5 H r 2 r H [ H 3 r

The transformation of the initial data of the last equation is produced by the
unitary T-product U (t): r (0) ® r (t), which is generated by the superoperator

H 3 as a solution of the following differential equation:

1

i

dU

dt
5 H 3 U

U (0) 5 I

The evolution operators U (t) along the fixed trajectory of the Markov process
obviously do not form a group or a semigroup. Nevertheless, averaging U (t)
over all trajectories with fixed ends

x (0) 5 x0, x (t) 5 xt

yields a contracting semigroup generated by a dissipative operator. In the
case of a discrete stochastic space the spectrum of the corresponding generator

B may have several one-dimensional branches in the upper half-plane of the

spectral parameter which are isomorphic to the absolutely continuous spec-

trum of the time-independent Liouvillian with the stochastic process ``frozen.’ ’



Spectral Analysis of Non-Self-Adjoint Operators in Hilbert Space 41

The following statement summarizes some results concerning the quantum

evolution on a Markov background (see, for instance, ref. 23).

Theorem 2. Assume that the stochastic space X is finite and that the

evolution of the transition probabilities of x (t) is governed by the Fokker±

Planck differential equation for transition probabilities in X with a positive

matrix M:E ® E, dim E 5 card X 5 d:

dP

dt
1 MP 5 0

Then the generator of the quantum evolution averaged over all trajectories

with fixed ends is a dissipative operator in quantum-stoachastic space Q 3 E
given by the following construction:

LM 5 {diag XH 3 (x)} 1 iM 3 IQ

Here IQ is the unit operator in the quantum space Q of density matrices, and

H 3 r [ H r 2 r H for any r P Q.

Stronger results including scattering on Brownian particle have been

given, e.g., by Cheremshantsev [24]. The described construction is similar

to the algebraic operation of braiding groups. We call it braiding evolutions
e iH(x)t via the Markov Process x (t). The result of braiding is the evolution
generated by the operator LM.

The explicit construction suggested above of the self-adjoint dilation

for SchroÈ dinger operators with complex potentials is quite general and can

be applied to the generators of the averaged dynamics. These dissipative

operators are strong perturbations of self-adjoint operators and they usually
have branches of continuous spectrum in the upper half-plane.3

In the simplest case of a two-point stochastic state the dissipative genera-

tor of the averaged dynamics is represented in matrix form:

1 L+ 0

0 L 2 2 1 i
k 2

2 1 Iq 2 Iq

2 Iq Iq 2
where L 6 are quantum Liouvillians corresponding to the stochastic states 6 ,

and Iq is the unit operator in the quantum space of density matrices. In this

case the Fokker±Plank operator and the second term of the generator of the
averaged dynamics coincide up to a factor k 2 with the orthogonal projection

Pa in the quantum-stochastic space onto the subspace Ea of elements which

3 Sometimes they are weak perturbations of normal operators [20].
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are antisymmetric with respect to the stochastic variables. Due to the idempo-

tency of the projections [(Pa)
2 5 Pa] this generator has the form

A 1 iG2

where G 5 k Pa.

The dilation of this operator is constructed by attaching to the quantum-
stochastic space two orthogonal ``incoming’ ’ and `̀ outgoing’ ’ channels D 6

D+ 5 E 3 L2(0, ` ), D 2 5 E 3 L2( 2 ` , 0)

with momentum operators

2i
du 6

d j
, j P (0, 6 ` )

acting on D 6 . In our case the perturbation iG2 is not a relatively weak operator

with respect to the real part A. The construction of the minimal self-adjoint

dilation is described by the following general assertion [20]:

Theorem 3. Consider a dissipative operator L represented in the form

of a sum of a self-adjoint operator A acting on a Hilbert space K and an

imaginary part iG2 constructed as a square of a bounded nonnegative operator

G. We assume that Range G 5 E:

L 5 A 1 iG2

Then the operator which is defined on the orthogonal sum of the space K
and the incoming and outgoing channels D 6 5 E 3 L2(0, 6 ` ) by the formula

+ 1 u 2

u

u+ 2 5 1
2i

du 2

d j
Au 1 iG [u 2 (0) 1 u+(0)]

2i
du+

d j 2
with the boundary condition

[u+(0) 2 u 2 (0)] 5 Gu

is the minimal self-adjoint dilation of L. The absolutely continuous spectrum

of it fills the real axis (generally with varying multiplicity). If the generalized

limits of the resolvent of the real part A on some dense linear subspace E8,
E8 , E exist, then the eigenfunctions of the dilation can be represented

through these limits.

In particular, this operator has two orthogonal systems c 6 of eigenfunc-

tions of the scattered-wave type, which form a basis of (reducing) invariant
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subspaces H 6 generated by D 6 , respectively, and two orthogonal systems of

eigenfunctions of absolutely continuous spectrum c . , c , in complementary

subspaces H . , H , .For instance,

c 2 5 1 e 2 (i/2) l j n
u

e 2 (i/2) l j S+( l ) n 2 , n P E8

The transmission coefficient S+ is nontrivial only in the subspace E and
is represented there by the formula

S+( l ) 5
IE 2 iGRA( l 2 i0)G

IE 1 iGRA( l 2 i0)G

through the generalized limit RA( l 2 i0) of the resolvent of the real part A,

and the central component u of c 2 is given by the formula

u 5 2 iRA( l 2 i0)G [S+ n 1 n ]

The eigenfunctions c , of the complementary component of + in H * H 2

vanish on D 2 and are represented through the eigenfunctions of the operator

L (which play the role of the central component) and exponentials in the

outgoing space:

c , 5 1 0

u

Gue 2 (i/2) l j 2
Here u is the properly normed eigenfunction of the operator L:

Au 1 iG2u 5 l u

A similar construction and the corresponding fact remain true in the

general case of a Markov process generated by some Dirichlet form. The
new subject of nonequilibrium statistical mechanicsÐ the S matrix, which

appears as a scattering matrix of the self-adjoint dilation of BÐ may play an

important role in the description of the large-time asymptotic behavior of

quantum systems approaching equilibrium and/or exhibing chaotic behavior.
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